NMR and MRI Studies of SEI, Dendrites, and Electrode Structures

P.I. Name: Clare P. Grey University of Cambridge 6/7/2017

Overview

Timeline

Life (capacity fade) Project start date: 10/1/16

Project end date: 9/30/17 Performance (high energy density)

Percent complete: 80% Rate

Budget

Funding for FY16: \$275,00 (final year of three year project)

New project started in FY17 (with same title)

Funding for FY17: \$275,000

Li⁺ ions

diffuse

through

SEI into

Si

Decomposition Silicon **Products** Large volume expansion of Si causes cracking in SEI and exposes fresh surfaces for reactions

Figure based on E. Peled et al. J. Electrochem. Soc. 144, L208 (1997)

SEI layer ~10-100 nm thick

Partners

Barriers

- Brett Lucht (Rhode Island)
- Alexej Jerschow (NYU)
- Chunmei Ban (NREL)
- Ram Seshadri (UCSB) Shirley Meng (UCSD)
- Peter Chupas (ANL)
- Karena Chapman (ANL)
- Stephan Hoffman; Andrew Morris; Dominic Wright; Erika Eiser; Cate Ducati (U. Cam)
- Paul Shearing (UCL)
- Peter Bruce (Oxford)

Relevance

Overall objectives:

- Design a stable SEI
- •Reduce overpotential (e.g., interfacial resistance, "structural hysteresis")
- •Optimise performance of Li and Na high capacity anodes and cathodes

Specific Objectives – April 2016-17

- •Identify major solid electrolyte interphase (SEI) components on Si, and their spatial proximity, Li⁺ transport through SEI, and how these change with cycling (capacity fade)
- To determine the effect of voltage and additives (FEC) on the composition of the Si SEI

 The first objective is to prepare ¹³C enriched FEC for ¹³C NMR multinuclear studies;
- •To synthesize and test new inorganic coatings to increase the Coulombic efficiency seen on cycling Si
- •Use recently developed in situ NMR/MRI metrologies to investigate Li (and Na dendrite formation), and the role that additives and different electrolytes play in controlling Li(Na) morphology.
- Develop new coatings for Si to reduce SEI formation
- •Identify correlations between SEI structure and thickness and Li metal dendrite formation
- •To apply methods developed to study lithium anodes to investigate sodium anodes.
- •To compare the nature of the SEI formed on Na vs. Li anodes

Milestones

2016

- Q2. Establish the difference between extrinsic and P-doped silicon nanowires. (6/30/16) Complete no clear differences, terminate project
- Q3. Complete SEI study of silicon nanoparticles by NMR spectroscopy. **Complete. 2 papers published.** Develop NMR methodology to examine cathode SEI (9/30/16) **Ongoing**
- Q4. Produce first optimized coating for Si electrode. (12/31/16) Complete; initial coatings produced

2017

- Q1 Multinuclear NMR studies of SEI coatings on Si with ¹³C-FEC. **Complete. Paper in preparation.**
- Q2 MRI/dendrite studies of two ionic liquids. Ongoing; new cell built
- Q3 DNP studies of SEI on Si with different additives (e.g. FEC) and coatings (e.g. phosphazenes). DNP Experiments for FEC/Si performed; analysis ongoing
- Q4 Multinuclear NMR studies of phase chemistries during (dis)charge of active materials in Na ion batteries. Cathode work complete; Sn ongoing

Approach/Strategy

Optimizing Si performance

- Reduce capacity fade and coulombic inefficiency
- Reduce overpotential
- Build a "better" SEI

SEI studies

- NMR studies of local structure as a function of cycling
- 2 dimensional and double-resonance
 NMR studies to establish proximity
 between species

Metal anodes and dendrites

 Use spectroscopy and imaging to study mechanisms of dendrite growth

Sodium positive and negative electrodes

Contrast LIB and NIB chemistry

- •¹³C NMR studies of ¹³C-enriched electrolytes to study SEI organic components; ⁷Li, ¹9F and ³¹P studies of inorganics.
- Develop DNP methods to study non-enriched electrolytes
- Synthesize enriched FEC and perform NMR studies
- •Synthesize decomposition products of FEC and VC via reduction with Li naphthalenide to compare with species present in Si SEI. Carry out multinuclear NMR studies of reduction products (B. Lucht).
- Develop new coating strategies and chemistries
 (D. Wright, E. Eiser)
- •MRI studies to correlate electrolyte concentration gradients with dendrite formation as a function of electrolyte and additives
- Correlate MRI results with X-ray tomography
- •Use in-situ methods developed for LIBs to determine the structures of disordered anodes
- •Extend NMR studies of paramagnetic cathodes to investigate local structures of NIBs

Technical Accomplishments and Progress

1. Determination of solid products formed on FEC and VC reduction (with B Lucht)

103 ppm resonance not seen in EC SEI studies on Si

Assignments with ¹H, ¹³C, ⁷Li, and ¹⁹F NMR were supported by FTIR analysis and XPS of FEC/VC reduction products

Michan, AL; Parimalam, BS; Leskes, M; Kerber, RN; Yoon, T; Grey, CP; Lucht, BL Chem. Mater., 2016, 28, 8149.

Proposed FEC/VC reduction products and possible structure for crosslinking site of poly(VC)

LiF
$$Li_2CO_3 + CO$$

$$Li_2C_2O_4 + poly(VC)$$

$$POly(VC)$$

$$poly(VC)$$

$$poly(VC)$$

Next steps: use a combination of ¹³C-labeling and dynamic nuclear polarization (DNP) to probe Si SEI on cycled electrodes

- •Use non-enriched electrolytes
- •Dichlorobenzene (DCB) used since its ¹³C signals do not overlap with main SEI resonances.
- •DNP radical TEKPol used to create magnetization

Next steps: use a combination of ¹³C-labeling and DNP to probe Si SEI on cycled electrodes

More aliphatics and 103 ppm "poly-VC" product

Effect of adding FEC and VC additives

Synthesis of ¹³C-enriched FEC

Based on the following prior literature:

G. Yao, Z. Dua, Jingxi Huagong, 29, 394-397 (2012).

Analysis of the NMR spectra of the electrolyte (shown here after 30 cycles) shows evidence for VC and vinoxyl radical (O=C-CH₂) derived species for FEC which are absent for EC only electrolytes

2. Metal Anode Dendites: First study identified two regimes of dendrite growth

High current – moss to dendrite transition correlates with Sands time

Sands time

$$\tau_s = \pi D \left(\frac{C_0 e}{2J t_a} \right)^2$$

 C_0 = initial electrolyte concentration

 t_a = transport no. of anion

J = Current density

D = ambipolar diffusion time

Lower current
Transition still occurs –
Sands time theory too
simple
Role of SEI?

-Currently exploring different additives, electrolytes, salt concentrations

 $J = 0.32 \text{ mA cm}^{-2}$

11

Current also controls the nucleation vs. growth of dendrites: **Application to Na anodes** Time / davs

Quantify fraction of microstructure accumulation:

Rate / mA cm ⁻²	Slope Cycle	(10 ⁻³) e vs. Const current
0.5	0.5	3
1	2.5	7
2	4.9	12
4	9.0	

Deposition process governed by two (extreme) nucleation processes,

progressive

-the number of nucleation sites continues to grow with time.

instantaneous

-All nucleation sites are activated simultaneously.

Bayley, PM et al. J. Am. Chem. Soc. 2016, 138, 1961.

Imaging metallic microstructures with a combination of tomography and "Flash" MRI

¹H MRI

0.0

t = 900 mins

Intensity / arb

3. Na vs Li Electrodes: Operando ²³Na NMR and PDF Data Used to Solve the Structures of Crystalline Phases Formed For Na-Sn

Using ²³Na NMR to Investigate Phase Transformations and Na Dynamics in Layered Na Cathodes: E.g., Mg-doped P2-Na_{2/3}MnO₂

Ex situ solid-state ²³Na MAS NMR of Na_{2/3}Mn_{1-v}Mg_vO₂

- More gradual structural changes + less extensive OP4 phase formation when Mg present.
- Na mobility increased noticeably

Other studies include a study of stacking faults in β -NaMnO₂, and oxygen redox processes and Na mobility in Na layered phases $P2-Na_{x}[Li_{y}Ni_{z}Mn_{1-y-z}]O_{2} (x,y,z \le 1)$

-1000

Responses to Previous Year Reviewers' Comments

Poster not reviewed last year

Collaboration and Coordination with Other Institutions

- Brett Lucht* (Rhode Island) SEI and additives; provided reduced FEC/VC samples
- Jordi Cabana* (UIC); Stan Whittingham* (Binghamton), Shirley Meng*, Peter Bruce Na cathodes (samples, magnetism)
- Stephan Hoffman, Cate Ducati, Andrew Morris (U. Cam) Synthesis of Si nanowires, TEM, theory (Si)
- Dominic Wright, E. Eiser (U. Cam), new electrode coatings, ¹³C-labeled FEC, EC
- Paul Shearing (UCL) X-ray tomography
- *Chunmai Ban (NREL) NMR characterization of alucone coatings

*BMR collaborators

Remaining Challenges and Barriers

- SEI studies are time consuming because the small sample sizes (poor S/N in NMR) and moisture/air sensitivity issues (cannot keep samples for long period of times).
 - comprehensive study takes time!
- Low yields for ¹³C enriched FEC; limited access to DNP facilities
 Continue to optimise yields and apply for DNP time
- MRI experiments limited by broken amplifier and need to redesign cell. Difficult to catch initial nucleating process.

Have now built relevant e-chem cells for MRI.

Proposed Future Work

- Complete/write up DNP of ¹³C-labeled electrolyte/additive on Si SEI study
- Complete/write up ¹³C-enriched FEC Si SEI study
- Continue Si-coating studies currently studying all inorganic, hybridinorganic/organic coatings
- Investigate SEI in presence of coatings
- Develop new NMR methods for determining sizes and intermixing (distances between) different components in the SEI
- Investigate effect of additives and different electrolytes (e.g. ionic liquids) on Li dendrite growth via NMR, MRI and tomography
- Chararacterize SEI formed in NMR/MRI studies by XPS and SIMS to help interpret NMR/MRI results
- Continue to investigate Na-ion negative electrodes complete Sn and compare with hard carbons and phosphides.
- Start work on Na SEI

Any proposed future work is subject to change based on funding levels

Summary

Silicon SEI:

- •FEC and VC were directly reduced with LiNap to analyze decomposition products with ssNMR, XPS, FTIR, and MS to understand the composition of Si SEI
- •Both FEC and VC form poly(VC) albeit in different quantities.
- •¹³C-labeled EC and FEC have been synthesized and ssNMR and DNP experiments have been performed
- •Preliminary DNP experiments indicate that cycled Si electrodes with FEC show evidence of formation of poly(VC), consistent with findings of direct chemical reduction study
- •Analysis of soluble products formed on cycling Si nanowires with FEC enriched electrolytes show the formation of VC derived products and species originating from vinoxyl radicals.

Li Dendrites:

- •Two mechanisms for microstructure growth clearly seen: mossy and dendritic
- •With a more robust understanding and control of SEI composition, we can leverage this information to learn how SEI influences Li microstructural growth
- •How does changing the electrolyte composition change Li dendrite growth? How do ionic liquids change SEI/dendrite growth?
- •Imaging in high resolution: ¹H FLASH MRI in conjunction with tomography techniques

Beyond Li:

- •Na metal microstructures continuously plate and grow more readily than Li.
- •Transition from progressive nucleation and growth to instananeous nucleation and growth on increasing the current
- •Transition metal doping (e.g. Mg) can be used to increase Na mobility in paramagnetic cathode materials for Na ion batteries
- •PDF and NMR methods in combination with theory can be used to solve the structures formed on sodiating Sn anodes. New layered Sn phase discovered.

Technical Back-Up Slides

1. Silicon SEI with EC/DMC only

First Studies Used Binder Free System – to remove ¹³C background and produce *more* SEI

Voltage Dependent Composition of the SEI:

Use DFT Methods to Provide Estimates for ¹³C/¹H/⁷Li NMR Shifts of Predicted Products and Functional Groups:

		Calculated and Measured Chemical Shifts / ppm		
Molecule	\mathbf{Atom}	ChemNMR	\mathbf{DFT}	Experimenta
LEDC				(solvent: $AC-d_6^9/D_2O^7$
O.	C1	161	171.0	157/161.
Li [†]	C2	65.5	64.5	62.9/62.
ō 1 0 0 °.	H2	4.39	4.3	3.53/3.5
2 Li	Li	_	0.9	,
LBDC ^{19,20}				
0	C1	161	171.3	
3 Li [†]	C2	67.1	68.0	
0-100	C3	24.8	25.4	
Li [†] 2	$_{ m H2}$	4.21	4.1	
0	Н3	1.61	1.7	
	Li	_	1.0	
LEC				(solvent: D ₂ O ⁸
	C1	161	171.4	163.
0 4 0	C2	63.5	62.8	60.
3 0 1	C3	13.8	11.9	19.
ž Li [*]	H2	4.21	4.1	3.6
ö	НЗ	1.27	1.5	1.1
	Li	-	1.0	
LMC			2.0	(solvent: $AC-d_6/DMSO^9/D_2O^8$
	C1	161	171.9	160.97/157.02/16
0 1 0	C2	54.1	51.5	62.40/51.51/54.
2 Li [*]	H2	3.68	3.8	3.56/3.27/3.3
Ö	Li	-	0.9	n
PEO	2.		0.0	**
	C2	61.3	62.5	
1 3 HO OH	C3	70.3	70.9	
HOOOOO	H1	5.4	0.1	
2	H2	3.7	4.0	
	H3	3.54	3.7	

1H NMR: New species at 1.3 ppm (saturated CH groups) emerges at lower voltages

Composition of the SEI on Silicon after 1 cycle

- Detailed ¹³C measurements of selectively labeled molecules yield composition of organics
 High concentration of EC trapped in SEI
- Li-> C CP detects lithiated carbonates (ROCO₂-), Li₂CO₃, formates (H- and RCO₂Li)

 A number of ether carbons from EC/DMC decomposition products are detected beneath the EC resonances

Quantification of the signals/species

Proposed Decomposition	Total ¹³ C	Molecular
Products	Signal (%)	Ratio
(a) ¹³ C ₃ EC Sample		
PEO -O <u>C</u> H ₂ CH ₂ O-	51	25
LEDC ($\underline{C}H_2\bar{O}\underline{C}_2\bar{L}i$) ₂	28	7
LEC <u>C</u> H ₂ CH ₂ O <u>C</u> O ₂ Li	18	6
and LBDC $(\underline{C}H_2\underline{C}H_2\underline{O}\underline{C}O_2Li)_2$		
R <u>C</u> O ₂ Li	2	2
Li ₂ <u>C</u> Õ ₃	1	1
(b) ¹³ C ₃ DMC Sample		
LMC <u>C</u> H ₃ O <u>C</u> O ₂ Li	58	29
Non-labelled EC and products	27	
R <u>C</u> O₂Li	7	7
Li ₂ <u>C</u> Ō ₃	7	7

Proposed Decomposition Mechanisms of EC & DMC

PEO

Our results showed experime evidence of decomposition products, consistent with theoretically predicted redumechanisms.

LEDC is widely believed to important EC decomposition product. We also observe evidence for LBDC and LECC (
$$CH_2R/CH_3R \sim 30/25$$
 ppm,

Our results showed experimental theoretically predicted reduction

LEDC is widely believed to be an important EC decomposition evidence for LBDC and LEC (CH₂R/CH₃R ~ 30/25 ppm, C3).

$$2 \qquad e^{-} + \text{Li}_{2}\text{CO}_{3} + \text{CH}_{2} = \text{CH}_{2}$$

Note that:

- some CH₂(/CH₃)CH₂-O comes from DMC reactions not described above
- ¹H NMR suggest that these species are formed during the low V plateau

PEO species dominate EC decomposition products...

"Extended" cycling with CMC

Identification of longer chain organics

Identification of longer chain organics

Resonanc	e ¹³ C Shift	t/ppm Fragment
A: EC/D		$R\underline{C}O_2Li$,
		$\mathrm{H}\underline{C}\mathrm{O}_{2}\mathrm{Li}/\mathrm{CH}_{3}\mathrm{CH}_{2}\underline{C}\mathrm{O}_{2}\mathrm{Li}$
B: EC/D	MC 170	$\mathrm{Li}_2\underline{C}\mathrm{O}_3$
C: EC/D	MC 160	RŌ <u>C</u> O ₂ Li,
		residual EC/DMC \underline{C} =O
D: EC/D	MC 67	\underline{R} OCO $_2$ Li,
		residual EC \underline{C} H ₂ ,
		PEO $-O\underline{C}H_2\underline{C}H_2O-$
E: DMC	53	CH ₃ OLi
		residual DMC CH_3
\mathbf{F}_{x} : EC	30	RCH_2R'
\mathbf{F}_y : EC	23	$\mathrm{CH_3} \underline{\bar{C}} \mathrm{H_2} \mathrm{R}$
$\mathbf{F}_z \colon \mathbf{EC}$	14	$\underline{C}\mathrm{H_3^{-}R}$
G_x : DMC	30	$R\underline{C}H_2R'$
\mathbf{G}_y : DMC	23	$\mathrm{CH_3} ar{ar{C}} \mathrm{H_2} \mathrm{R}$
\mathbf{G}_z : DMC	14	<u>C</u> H ₃ R

Assignments for the ¹³C spectra of the 15 cycle sample

Cycling with CMC

Li⁺ ion diffusion in the increasingly dense electrode structure: expansion on lithiation reduces transport through top of electrode

Capacity loss and evolving kinetics: high voltage process lost due to increased tortuosity through electrode

delamination and dense electrode structure.

DNP MAS NMR – enhanced sensitivity of organic SEIs on cycled rGO electrode

DNP MAS NMR – enhanced sensitivity from organic SEIs on cycled rGO electrode (cont'd)

- Detecting SEIs with natural abundance (NA)
 ¹³C electrolyte by ssNMR is beyond sensitivity limit
- Enhanced sensitivity and resolution from a cell cycled with NA ¹³C electrolyte by DNP in a reasonable time
- New approach to study the surface layers formed in many electrode materials

M. Leskes et al., J. Phys. Chem. Lett. 2017, 8, 1078-1085.